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a mild N2 dependence, where N(y) ∼ [M5L(y)]3/2 is the effective number of degrees of

freedom of the holographic dual QFT, and where L(y) is the local curvature radius, which

decreases in the infrared. In addition, the bounce action is not enhanced by large numbers.

These features allow the transition to successfully complete over a wider parameter range

than for Goldberger-Wise stabilized RS models. Due to the increase of L(y) in the ultra-

violet, the throat has a reliable gravitational description even when the number of infrared

degrees of freedom is small. We also comment on aspects of the thermal phase transition

in Higgsless models, where the gauge symmetry breaking is achieved via boundary condi-

tions. Such models include orbifold-GUT models and the Higgsless electroweak symmetry

breaking theories of Csaki et al., with Standard Model gauge fields living in the bulk.
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1. Introduction

The Randall-Sundrum (RS) model [1], consisting of a warped throat-like slice of AdS5

space-time with ultraviolet (UV) and infrared (IR) boundary branes, offers a natural reso-

lution to the electroweak hierarchy problem. Moreover, such strongly warped regions are a

natural and possibly ubiquitous feature of string theory flux compactifications [2 – 9], and,

due to the KKLT construction [10], the landscape of metastable string vacua. Therefore,

it is a pressing question to understand the finite-temperature behaviour of such theories

and the possible implications of this behaviour for the early universe.

The finite-temperature equilibrium properties and phase-transition dynamics of Gold-

berger-Wise (GW) [11] stabilized RS models have been studied in refs. [12 – 14]. It was

found that the RS solution is thermally preferred at temperatures much less than the IR

scale, while the high-temperature phase is an AdS5-Schwarzschild (AdS-S) geometry with

a horizon replacing the infrared brane, with a first-order transition between the two phases.

However, as noted in ref. [12], essentially because of the weak breaking of conformal sym-

metry in the IR for GW stabilized RS models, the transition temperature is parametrically

suppressed relative to the IR (TeV) scale, and there is only a very small range of parame-

ters where the transition is able to complete, the early universe typically being stuck in a

Guthian old-inflation state. In addition, the part of parameter space where the transition
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successfully completes is the regime in which a reliable gravitational description of the RS

slice of AdS5 is, at best, close to breaking down. These difficulties not only apply to the

electroweak phase transition if the hierarchy problem is solved by warping, but they also

have implications for hidden sector throats if the post-inflation reheat temperature in the

hidden throat is above the IR scale of the throat.

Our intention in this letter is precisely to re-examine the issue of phase transitions in

warped models. In particular, we consider the more realistic class of warped throat solutions

based on the Klebanov-Tseytlin (KT) geometry [15, 16] that one expects in string theory

constructions, instead of the rather idealized GW-stabilized RS models studied so far. Our

primary result is that the thermal bubble action has a much milder N2 dependence (where

N measures the effective number of degrees of freedom of the dual holographic theory)

and is not otherwise enhanced by large numbers, allowing the transition to successfully

complete over a significantly wider range of parameter space. In addition, an important

feature of the KT geometry is that the effective N increases with distance, y, along the

throat as one moves away from the IR, N2(y) ≃ 27π2[M5L(y)]3/4g2
str, where L(y) is the

local curvature radius which becomes larger in the UV. Because of this increase, and even

for small N in the IR, the majority of the throat can be in a regime where the gravitational

description is good, M5L(y) ≫ 1, and the existence of the strongly warped throat is reliably

predicted in the first place.

The plan of this letter is as follows: in section 2 we discuss the KT throat geometry as

well as a 5D effective field theory description of the throat and its stabilization dynamics

developed by Brummer et al. [17]. In section 3 we discuss the thermal phase transition

in the KT throat geometry, and compute the transition temperature as a function of the

warp factor at the tip of the throat. Section 4 addresses the phase transition dynamics

following the procedure of Creminelli et al. [12], and also compares our results to those

obtained previously for the GW-stabilized RS geometry. In section 5 we discuss the nature

of gauge symmetry breaking when gauge fields are present in the bulk of the throat. In

particular, we focus on models such as Orbifold GUTs and Higgsless electroweak models,

which involve gauge symmetry breaking by boundary conditions on the IR brane. Finally,

section 6 contains our conclusions.

2. The stabilized KT throat & the 5D effective theory

The conifold throat region in the Klebanov-Tseytlin (KT) solution of type IIB supergravity

is described by the 10D metric

ds2 = h(r)−1/2ηµν dxµdxν + h(r)1/2(dr2 + r2ds2
T 1,1) , (2.1)

with a constant dilaton, certain fluxes that we need not specify here, and 4D Minkowski

metric ηµν . The warp factor is given by

h(r) = 1 +
81α′2g2

strM
2 log(r/rs)

8r4
. (2.2)

Here M is the F3-flux quantum (equivalently the number of fractional D3 branes at the

conifold singularity) while ds2
T 1,1 is the 5D metric of the internal T 1,1. The throat region,
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analogous to the region between the IR and UV branes in RS models, lies between r/rs ∼ 1

and [81α′2g2
strM

2 log(r/rs)]/(8r
4) ∼ 1 in the IR and UV, respectively. The fine details of

the Calabi-Yau manifold onto which the throat matches at large r, or the region around

r = rs (a singularity of the above metric which can be resolved by a Klebanov-Strassler

tip [16]), will not play a role in our calculation. What is important is that because of the

log(r/rs) in eq. (2.2) this geometry describes a deformation away from an exact conformal

AdS5 ×Σ5, with the feature that the breaking of conformal symmetry becomes stronger as

the IR is approached, r → rs. This is precisely the feature that will enable an unsuppressed

thermal transition [12, 18].

To study the dynamics of the thermal transition, it is useful to switch over to an

effective 5D description in which the essential degrees of freedom of the throat are iso-

lated. Brummer, Hebecker, and Trincherini (BHT) [17] have shown in detail how the

flux stabilization of the throat length in the KT solution can be understood in terms of a

Goldberger-Wise-like mechanism stabilizing a hierarchy between effective ultraviolet and

infrared branes. In the 5D Einstein frame the field content is gravity minimally coupled to

a scalar field H with action given at leading order by

S =

∫

d4x

∫ yUV

yIR

dy
√
−G

(

M3
5

2
R5 −

1

2
GMN∂MH∂NH − V (H)

)

−
∫

d4x dy

√
−G

√

Gyy

(

[ΛIR + VIR(H)]δ(y − yIR) + [ΛUV + VUV(H)]δ(y − yUV)

)

, (2.3)

where R5 is the five-dimensional Einstein scalar curvature, M5 is the Planck mass in 5D,

and V and VUV,IR are the bulk and UV/IR-brane-localized potentials of the scalar H. The

new radial coordinate y is related to r by

y =
(3g2

strM
2/π2)2/3

5M5
[log(r/rs)]

5/3 ≡ Rs [log(r/rs)]
5/3 , (2.4)

and runs from small values, y ∼ Rs (which sets the size of the tip region) in the IR, to

large values in the UV. The potential is

V (H) = −864M7
5

25R2
s

H−8/3 . (2.5)

The GW field H represents the continuously varying (with respect to r or y) flux of the

Neveu-Schwartz 2-form potential B2 integrated on the two-cycle in T 1,1, which deforms the

geometry along the throat away from AdS5. Finally, the brane-localized tensions ΛIR,UV

take account of the leading contributions of the UV “CY-head” and IR “tip” in the 5D

effective theory and are necessary for the satisfaction of the Israel boundary conditions.

It is straightforward to see that the system of eq. (2.3) possesses solutions reproducing

the 5D (xµ, r)-coordinate part of the KT throat in eq. (2.1). Explicitly, consider the 5D

metric ansatz

ds2 = e2A(y)−2A(yUV)ηµν dxµdxν + dy2 . (2.6)

The action of eq. (2.3) then implies the H equation of motion (∂2
y +4∂yA(y)∂y)H = ∂V/∂H.

A posteriori, it can be checked that, away from the far IR region, H is slowly varying on
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the scale of the curvature, so the ∂2
yH term can be dropped. The potential eq. (2.5) then

implies that the profiles of the warp factor A and scalar H are given by

A = (y/Rs)
3/5 + subleading, and H =

√
8M

3/2
5 (y/Rs)

3/10 + subleading , (2.7)

in an expansion in powers of (Rs/y), or equivalently 1/A(y). Examining the higher-order

terms in the 1/A(y)-expansion of the equations of motion shows that the expansion breaks

down for A(y) <∼ 1, where the local curvature length L(y) defined by R5 = −20/L2(y) is

given by

L(y) ≃ 5RsA(y)2/3

3
, (2.8)

and approaches the size of the ignored T 1,1 manifold. For A(y) >∼ 1 one is in a regime where

the 5D gravitational description is reliable. Related to this fact, the number of degrees of

freedom of the holographic dual gauge theory is large in this regime. Specifically, at a given

y the number of effective degrees of freedom of the dual (N = 1 SYM) gauge theory is

given by

N2(y) =
27π2

4g2
str

[M5 L(y)]3 , (2.9)

as can be deduced from the analysis of KT [15] and BHT [17]. Note that in the remainder

of this work we take g2
str = 1, following Klebanov and Tseytlin [15].

The solution eqs. (2.6), (2.7) reproduces the 5D geometry of the deformed warped

throat of the KT solution eqs. (2.1), (2.2) after performing a Weyl re-scaling, as can be

seen using eq. (2.4). It is straightforward to derive from the solution the expression for the

4D Planck mass Mpl,4 in terms of the parameters in the 5D effective theory:

M2
pl,4 =

5

6
M3

5 Rs

(

yUV

Rs

)2/5

+ subleading . (2.10)

Finally, in the effective 5D theory, the positions of the IR and UV branes, and thus

the relative warping between the IR and UV, are set by the values of H enforced by the

brane-localized potentials VIR,UV. If the potentials are stiff, enforcing H(yIR,UV)/(
√

8M5) =

cIR,UV, for some O(1) constants cIR and cUV respectively, then the relative warping between

the ends of the throat is simply given by exp (2AIR − 2AUV) = exp
(

2c2
IR − 2c2

UV

)

, and can

easily be sufficiently large to explain the electroweak-to-Planck hierarchy.

Before we turn to the study of the thermal phase transition we comment that we will

not, at any point, require the exact form of the potentials V (H) and VIR,UV or the effective

brane cosmological constants ΛIR,UV. The reason is that once the Einstein equations are

solved under the assumption of low curvature, everything in the problem is determined in

terms of the warping A(y). The relevant equations enabling this simplification are

6A
′2 ≃ − V

M3
5

, (2.11)

M3
5

√
−G(3A

′′

) ≃ −
√

−GIR ΛIR δ(y − yIR) −
√

−GUV ΛUV δ(y − yUV). (2.12)

In particular, the last equation is nothing but the expression of the jump condition for the

metric at the branes, and it gives us ΛUV = 18
5Rs

M3
5 A

−2/3
UV and ΛIR = − 18

5Rs
M3

5 A
−2/3
IR .

– 4 –



J
H
E
P
1
0
(
2
0
0
7
)
0
8
9

3. The thermal phase transition

Following the analysis of Creminelli et al. [12], the features of the finite-temperature phase

transition are most easily explained by utilizing the holographic dual description of the

theory. As is well-known, the AdS/CFT correspondence [19 – 21] admits an extension to

RS models such that they possess a dual interpretation as a strongly coupled 4D CFT

coupled to gravity and spontaneously broken in the IR [22 – 25]). The further extension to

perturbed AdS theories, and thus non-CFT dual theories is also by now well understood

(see e.g. [26]).

We start by briefly recalling the gravity/QFT holographic dictionary: an operator Ô
on the field theory side is sourced by the boundary value φ0 of a bulk field φ defined in the

gravity theory. Mathematically:
〈

exp

∫

d4x Ôφ0

〉

QFT

= Z5D[φ0] , (3.1)

where the left hand side of this equation refers to the generating functional of the given

boundary operator Ô, and the right hand side refers to the partition function calculated

in the gravity theory, with the restriction of the field φ to the value φ0 on the boundary of

the space. Using this ansatz, one may calculate the finite temperature partition function,

and thus the thermodynamic properties, of the 4D field theory using the 5D path integral

with periodically identified Euclidean time. The advantage offered by the 5D formulation

is that when the boundary theory is strongly coupled, the bulk theory is weakly coupled,

allowing the use of standard semi-classical techniques.

Now, if we have a certain QFT defined on the boundary of the space, and we claim

that this QFT is dual to a certain gravitational description, then there is no reason to

pick one solution to the bulk Einstein equations over another. To put it differently, any

5D bulk metric which solves the bulk Einstein equations and asymptotes to the required

behaviour at the UV is in principle admissible in the holographic correspondence, the

different metrics corresponding to different (thermal) phases of the dual 4D field theory.

The preferred phase of the QFT is found by comparing the free energies of the different

gravitational backgrounds [27].

Thus, to study the phase transition in our system we first demonstrate an alternative

solution to the bulk Einstein equations, namely a warped black hole solution.

3.1 The black hole solution

Examining the Einstein equations coming from eq. (2.3), and proposing a black hole ansatz

of the form

ds2 = e2A(y)−2A(yUV)
(

−f(y)dt2 + δij dxidxj
)

+
dy2

f(y)
, (3.2)

where i, j = 1, 2, 3, we find that the equations are indeed solvable, again subject to the

assumption of A(y) ≫ 1. The function f(y) is given by an integral expression in terms of

the warping A, so that

f(y) = 1 −
∫ y

dy′e−4A(y′)

∫ yh dy′e−4A(y′)
≃ 1 −

(

A(y)

Ah

)2/3

e4Ah−4A(y), (3.3)
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where Ah = A(y = yh). This solution has a black hole horizon at y = yh, and the IR brane

is eliminated. The UV brane remains with the same brane tension as before, because of

the essential requirement of holography, which is that the induced metric at the UV is

identical for any bulk configuration.

However, the profile of the field H in this background is different, meaning that the

potential V as a function of y is different. Again, we can read off the required dependence

from the Einstein equations, obtaining

6fA′2 +
3

2
A′f ′ ≃ − V

M3
5

. (3.4)

This will be crucial in determining the properties of the phase transition. Note also that

the temperature of this black hole, which can be calculated by ensuring that there is no

conical singularity at the horizon, is given at leading order in the expansion in 1/Ah by

Th =
3A

−2/3
h eAh−AUV

5πRs
. (3.5)

As alluded to above, the black hole solution is thermally preferred at high temperatures.

In this case, there is a black hole horizon instead of the infrared brane. At the position of

the UV brane, which is far from the black hole horizon, the geometry is similar to that of

eq. (2.6) We now show that this solution of the Einstein equations is thermodynamically

stable above a critical temperature Tc.

3.2 Comparing the free energy

We wish to calculate the free energy of both gravitational solutions. To do this, we need to

Wick-rotate the time coordinate to go into Euclidean space, such that the time is periodic

with periodicity 1/T , where T is the temperature of the ensemble. We must then employ

the semi-classical approximation, calculating the on-shell action S. The free energy is then

given by −T S.

This amounts to evaluating R5 via the Einstein equations and substituting into

eq. (2.3) for both gravitational solutions. Taking the trace over the Einstein equations,

one obtains

1

2
M3

5

√
−GR5 =

1

2

√
−GGyy (∂yH)2 +

5

3

√
−GV (H)

+
4

3

√
−G

√

Gyy

ΛUV δ(y − yUV) +
4

3

√
−G

√

Gyy

ΛIR δ(y − yIR). (3.6)

Note that this is the form of the equation in either gravitational background, assuming that

H depends only on y. The y-dependence of V is of course different in either background, as

argued above. Plugging this into the action for the broken phase ( i.e., the warped solution

eqs. (2.6), (2.7) with both UV and IR branes), we obtain

Sb = − M3
5

10Rs
β

[

A−5/3e4A−4AUV

]UV

IR
+ O(A

−8/3
UV ), (3.7)
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where this is the on-shell action per unit 3-volume. Note that, to be consistent with the

large A approximation, we have kept only the leading terms of order A−5/3 and higher.

The parameter β is the inverse of the temperature, and comes about when the integral

over Euclidean time is performed. The free energy of this phase is given by Fb = −Sb/β.

Carrying out the same calculation for the black hole solution (unbroken phase), we

obtain

Su =
M3

5

10Rs
β

(

[4 ln(AUV/Ah) + 3]A
−2/3
h e4Ah−4AUV −

[

A−5/3e4A−4AUV

]UV

h

)

+ O(A
−8/3
UV ),

(3.8)

where the free energy of the black hole is given by Fu = −Su/β.

One immediately sees that the parts of the free energies which have a power-law depen-

dence on the ultraviolet physics vanish identically upon subtracting the two free energies,

leaving a mild logarithmic residual dependence on AUV. The critical temperature Tc of the

transition can be obtained by equating the two free energies, giving the equation

[4 ln(AUV/Ah) + 3]A
−2/3
h e4Ah−4AUV ≃ A

−5/3
IR e4AIR−4AUV , (3.9)

where we have used only the leading terms. Note that from this equation we find Ah < AIR.

This is an important feature as it implies that the thermal transition occurs in a region

where conformal symmetry breaking is greater than that for the position of the IR brane

at zero-temperature. Although the equation for Ah can not be solved analytically, an

approximate solution, valid for values of AIR
>∼ 1.5, is

Ah ≃ AIR − 5

12
ln(AIR) − 1

4
ln[4 ln(AIR + ∆) + 3]

+
1

6
ln

[

AIR − 1

4
ln

(

A
5/3
IR [4 ln(AIR + ∆) + 3

)

]

. (3.10)

Rewriting the free energy of the unbroken phase in terms of the temperature, and

rewriting the free energy of the broken phase to expose the dimensions, we obtain

Fb ≃ −(M5Rs)
3

10
A

−5/3
IR

(

e−∆

Rs

)4

and (3.11)

Fu ≃ −(M5Rs)
3

10

(

(5π/3)4α[ln(5πRsTc/3) + AUV]2
)

T 4
c , (3.12)

where α = 4 ln[AUV/Ah(Tc)] + 3, and ∆ = AUV − AIR. This allows us to express the

temperature of the transition as

Tc =
A

−5/12
IR

α̃1/4

(

e−∆

Rs

)

, (3.13)

where, after some algebra,

α̃(AIR)1/4 =
5π

3
(4 ln[AUV/Ah] + 3)1/4 A

1/2
h . (3.14)
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In this last equation Ah should be understood as the AIR-dependent solution to eq. (3.9).

This shows us that there is no hidden N -dependence inside α̃(Tc)
1/4, although there is AIR

dependence. Notice that the factor α̃(Tc)
1/4 ≤ 10 for AIR ≤ 2.

For a throat that solves the electroweak-to-Planck hierarchy problem by warping,

e−∆/Rs is of the order of a TeV. This then immediately leads to the observation that

Tc is also O(TeV) and is not parametrically suppressed if AIR ∼ 1, i.e. if the IR brane

is in the tip region as one expects. This is in contrast to the result of Creminelli et al.

ref. [12], who find that the transition temperature is Tc = (8ǫ3/2v2
1/π

2N2)1/4µTeV, which

is suppressed relative to µTeV by both a power of N (where N2 ≃ 16π2[M̃5L]3 measures

the number of degrees of freedom of the dual QFT in their case 1) and the additional

small parameters v1 and ǫ related to the GW stabilization mechanism (typical values are

M̃5L >∼ 5, ǫ ≃ 1/20 and v1
<∼ 1/5).

4. The dynamics of the phase transition

We have shown that there are two gravitational solutions corresponding to two different

finite-temperature phases of the theory. There is a free-energy barrier between the two

phases at Tc so the thermal transition is first order, proceeding via the nucleation of critical

bubbles of the stable phase inside the unstable phase, which then grow eating up the false

phase. If the nucleation rate per Hubble volume, Γ/H3
Hub, is higher than the rate of

expansion of the universe, HHub, the bubbles of stable phase will collide, and the phase

transition will complete.

To calculate the rate of bubble nucleation, the rigorous procedure is to construct the

full gravitational (and stabilization) field dependent ‘bounce’ solution corresponding to

the bubble nucleation, and then calculate the on-shell action for this solution, and ideally,

also calculate the fluctuation determinant about this solution [28, 29]. Unfortunately, the

precise nature of the topology-changing gravitational instanton is not known so we cannot

follow this procedure. However, following the analysis of Creminelli et al. and Randall

and Servant we are able to estimate the on-shell bounce action at leading order in a large

AIR expansion, which is sufficient for our purposes. These authors imagine a configuration

which interpolates between the black hole solution outside, going through pure AdS, then

pushing the infrared brane from infinity (far IR) back to its stabilized position. There

are then two contributions to the bounce action, one from motion in the broken phase,

and one from the unbroken phase. Consider the broken phase contribution: the degree of

freedom whose motion dominates this part of the bounce action is the massive radion field

which encodes the inter-brane separation. To calculate the bounce action we need to know

the form of the radion free energy as a function of the interbrane separation, and, in the

case of GW-stabilized RS solutions, this is known to leading order. In our case there is

similarly a massive radion in the broken phase. This radion field is stabilized at a certain

value via the fluxes at either end of the space, and the value of the radion free energy

function at its minimum is exactly the on-shell action in the broken phase that we have

1Note that the mass scale M̃5 is related to our M5 by the rescaling M
3

5 = 4M̃
3

5 , due to a factor four

difference in the gravitational action.
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calculated. Moreover, as we argue below, we know both the physical height and length of

the free-energy barrier on the broken side, although not the full functional form. To be

conservative, we thus assume that the potential for the radion field to tunnel from small

values to its stabilized value is a square potential barrier. This should give us a worst-case

estimate for the contribution to the tunneling rate only from the broken phase side of the

geometry.

The contributions from the black hole side, as well as the small y/Rs region of the

broken side, are not calculable, similar to the case of the analysis of Creminelli et al. and

Randall and Servant. However, because these contributions arise from a strong coupling

region with dynamical scale Λ we can estimate their contribution to the free-energy barrier

and thus the tunneling action. As we will argue in the next section, this contribution is

sub-leading in the large AIR limit.

4.1 The radion kinetic energy term

By the arguments we just gave, we already have the height of the free energy barrier

between the two phases, which is given by eq. (3.7). What we also need, however, is the

canonical kinetic energy term for the radion in the broken phase, so that we can evaluate

the correctly normalized tunneling distance from the A ∼ 1 regime to the stabilized radion

value. So the question is: how do we represent the radion in our metric of eq. (2.6)?

We use the simplest available ansatz to achieve that, namely requiring that the metric

representation still solves the Einstein equations for a constant value of the radion. The

ansatz we employ is [30 – 32]

ds2 = e[2A(y)−2A(yUV)]φ(x)3/5

gµν(x) dxµdxν + φ(x)2dy2 , (4.1)

where φ(x) is the as yet un-normalized radion field. Note that we have chosen conventions

where the minimum of the radion is at φ = 1. Now, to obtain the kinetic energy term in the

dimensionally reduced effective 4D action, we need to only retain terms with two powers

of the radion and two powers of the derivative in the xµ direction. We finally obtain

SKE = −9M3
5 Rs

10

∫

d4x
√

−g(x) A
2/3
IR ∆2 e−2∆φ3/5

φ−2/5 gµν ∂µφ∂νφ. (4.2)

Carrying out an (approximate) normalization for this term, we obtain that the tunneling

distance is from about zero to χmin in the normalized coordinates χ, where the physical

tunneling distance in field space is given by

χmin =
√

5 (M5Rs)
3/2 A

1/3
IR

(

e−∆

Rs

)

. (4.3)

This tunneling distance is of the same order as that of Creminelli et al.. This is to be

expected: the radion is a gravitational degree of freedom, and therefore we expect the

factor of (M5Rs)
3 sitting outside its kinetic term, in the same way as for the 4D graviton.

By comparing this tunneling distance with the critical temperature of eq. (3.13), we can

see that the tunneling distance is bigger by a factor

χmin

Tc
∼ (M5Rs)

3/2A
5/4
IR ∼ NIRA

1/4
IR , (4.4)
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where NIR = N(yIR). Because of this the contribution to the bounce action from the

black hole side of the instanton is parametrically suppressed (at least until M5Rs, AIR ∼ 1)

compared to the contribution from the broken side. This is the same as the analysis of

Creminelli et al, and allows us to focus on the broken-side contribution. At this point we

have all the information needed to calculate the rate of bubble nucleation, to which we now

turn.

4.2 The rate of bubble nucleation

We will now collect all of intermediate results and assemble them into the rate of bubble

nucleation of broken phase bubbles inside the black hole phase. As in the case discussed

by Randall and Servant [13], the transition typically proceeds by O(3)-symmetric thermal

nucleation of thick-walled bubbles. We will therefore quote the (approximate) formulae for

thermal bubble nucleation in the thick-wall approximation, and then use our results to do

the calculation.

For thermal bubbles, the formula for the rate of bubble nucleation per unit 3-volume

is

Γ = Be−S3/T . (4.5)

The fluctuation determinant B ≃ T 4
c at the transition temperature, and S3 is the Euclidean

action for the bounce solution, which is given by2

S3 ≃ 4π

3

χ3
min√

2 δFT
, (4.6)

where, as we explained above, we have made the conservative assumption of taking the po-

tential for the radion, V (χ), to be just a square barrier with length χmin. The denominator

in eq. (4.6) is the difference in the free energies of the phases at temperature T , which we

can write in the form

δFT =
(M5Rs)

3

10
A

−5/3
IR

(

e−∆

Rs

)4
[

1 −
(

T

Tc

)4 α̃(T )

α̃(Tc)

]

. (4.7)

Gathering all the ingredients, we now have an expression for S3/T , in which we display

clearly the dependence of the tunneling rate on the relevant parameters. After using the

expression for Tc, eq. (3.13), we find

S3

T
=

100π

3
α̃(Tc)

1/4(M5Rs)
3A

9/4
IR f(T ) , (4.8)

where

f(T ) =
Tc

T

(

1 −
(

T

Tc

)4 α̃(T )

α̃(Tc)

)−1/2

. (4.9)

Keeping in mind that α̃(Tc)
1/4 has a leading AIR dependence of A

1/2
IR , it is clear that eq. (4.8)

demonstrates the strong suppression of the bounce action as one moves the position of the

2Note that there is a typographic error in the T dependence of eq. (18) of ref. [13].
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infrared brane closer to the strong coupling regime, AIR → 1. Of course as one approaches

AIR ∼ 1, we lose control over our calculation. Nevertheless, we believe that eq. (4.8) reliably

shows that the tunneling rate becomes parametrically unsuppressed as AIR becomes small.

Alternatively, in terms of the number of effective degrees of freedom of the holographic

dual, eq. (2.9), we can write

S3

T
=

16

15π
α̃(Tc)

1/4A
1/4
IR N2

IR f(T ) . (4.10)

This is the form in which the constraints imposed by successful completion of the transition

are physically most transparent. Examining this formula, we see that the bounce action

goes like N2, as expected from general considerations in strongly coupled theories [18].

This is a major difference from the case of traditional Goldberger-Wise stabilized Randall-

Sundrum models, where a dependence of N7/2 is obtained [12, 13].

As we have already mentioned, the criteria for the completion of the transition is that

the bubble nucleation rate must exceed the rate of expansion of the universe, so that the

bubbles collide. We can recast this condition as

Γ >∼ H4
Hubble where H4

Hubble ∼ ρ2/M4
pl , (4.11)

where HHubble is the Hubble parameter, ρ is the energy density of the universe and Mpl is

the reduced 4D Planck mass. For phase transitions occurring at the electroweak scale, this

implies that, upon taking the logarithm of eq. (4.5), the condition S3/T <∼ 140. Taking, in

the expression eq. (4.10) for the bounce action, AIR = 2 (so α̃(Tc)
1/4 ≃ 10), and using the

fact that the minimum value of f(T ) is f ≃ 1.6, we therefore obtain the following upper

bound on NIR

N2
IR ≤ 21 . (4.12)

This restriction on NIR is stringent but materially less so than in the case of GW-stabilized

RS models. We also remind the reader that eq. (4.12) is a conservative estimate, because

we have taken the extreme approximation of the radion potential as a square barrier of

height equal to the maximum depth of the free-energy potential.

4.3 The rate of bubble nucleation at other energy scales

We have shown in the previous subsection that, for a throat in which the electroweak-to-

Planck hierarchy is resolved, the upper bound on NIR is improved compared to the result

in Goldberger-Wise-stabilized Randall-Sundrum models. One can use the same formalism

to tackle other hierarchies in field theory, the most obvious example being the GUT-to-

Planck hierarchy. The difference in that case would be the value of ∆, which measures the

separation between the UV and IR branes. More precisely, we now require that e−∆/Rs is

of the same order as the GUT scale.

The action for thick-walled bubbles still has the same functional form as eq. (4.10),

and the slow variation of α̃(Tc)
1/4 means that the actual rate of bubble nucleation does

not change. Applying the same reasoning as above, we obtain the following upper bound

on NIR

N2
IR ≤ 3 . (4.13)
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One can generally see that as we increase the scale at which the phase transition takes

place, the upper bound on NIR considerably decreases, meaning that the gravitational

description in the tip region is not trustworthy if the transition is to complete.

4.4 Discussion of results

The calculations of the bubble nucleation rate of Creminelli et al. in ref. [12] have been

done in the thin-wall approximation, where the radius of the bubbles is much larger than

the wall thickness, and for positive values of the GW parameter ǫ. More recently, Randall

and Servant [13] have studied the thick wall case (and ǫ < 0), where the wall thickness is

comparable to bubble size, and they argued that this contribution dominates and enhances

the nucleation rate over most of parameter space. However, for both Creminelli et al. and

Randall and Servant, the bounce action still has a strong N7/2-dependence, so there is only

a small range of parameter space where the transition successfully completes. Moreover,

in the GW-stabilized RS case, the expression N2 = 16π2[M̃5L]3 + 1 applies at all positions

along the AdS5 slice, so to be in a regime where the gravitational description is under control

one needs M̃5L >∼ 1 at the very least, or equivalently N >∼ 4π, which poses a significant

problem for the completion of the phase transition.

On the other hand, for the KT geometry, and unlike the GW-stabilized RS case, the

conformality of the theory while good in the UV is badly broken in the IR. This can be

seen explicitly from the fact that the number of degrees of freedom of the dual gauge

theory varies as a function of scale, eq. (2.9), N2(y) ≃ [M5L(y)]3, where L(y) varies as

L(y) ∼ Rs(y/Rs)
2/5 and therefore becomes small in the IR region y <∼ Rs, and the t’Hooft

parameter of the corresponding holographically dual QFT becomes O(1), so the theory

is truly strongly coupled. Further, it is vital to realize that the N2 in the bounce action

is the IR value of the number of degrees of freedom, and it is only this number that is

constrained to be small by completion of the phase transition, eq. (4.12). In most of the

throat the number of effective degrees of freedom, or equivalently the curvature radius, is

much larger so that the throat for most of its length is in a regime where the leading order

action, eq. (2.3), applies, and the existence of the throat is reliably described.

Finally, we mention in passing that transitions of second-order sometimes seem possible

in the modified geometries that we discussed in this paper. We hope to return to this issue

in future work.

5. Gauge symmetry breaking and higgsless models

So far, we have imagined that a physical Higgs degree of freedom is localized on the infrared

brane, with the electroweak gauge bosons living on either the IR brane or propagating in

the bulk of the space. As argued by Creminelli et al, Standard Model fields localized on the

IR brane do not greatly affect the transition temperature or dynamics, as the contributions

of these modes to the free energy is formally sub-leading in the N -expansion, though one

can imagine situations where this is no longer the case. The SM gauge fields, whether they

are IR-localized or in the bulk, also do not greatly affect the transition, because they do

not possess a tree-level contribution to the free energy in either case.
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However, models with IR branes lead to an interesting possibility regarding the break-

ing of electroweak symmetry. In the case of bulk gauge fields, it is possible to completely

remove the Higgs from the problem: by imposing a judicious set of boundary conditions

on the gauge fields, the zero modes of the gauge bosons can be removed, and one obtains a

spectrum of first-excited-state Kaluza-Klein modes which reproduce the spectrum of mas-

sive gauge bosons expected of a spontaneously broken gauge symmetry, but without the

need for an explicit Higgs field.3 This gauge symmetry breaking by boundary conditions

was applied to extra-dimensional ‘orbifold’ GUT model building in refs. [33 – 37], and later

applied to electroweak symmetry breaking by Csaki et al. [38 – 41]. This class of Higgsless

electroweak models can be tweaked quite naturally in order to have properties very similar

to those of the real world.

It is interesting to discuss the manner in which the gauge symmetry is restored at

high temperature in such Higgsless theories. As discussed in previous sections, the black

hole solution is thermally preferred at high temperatures, and in that case, the infrared

brane is replaced by the black hole horizon. At the position of the UV brane, which is far

from the black hole horizon, the UV boundary conditions are untouched. However, as we

argue below one does not have any freedom in the infrared now: one is forced to select the

regular solution of the equations of motion at the black hole horizon. Since in the high

temperature phase one can only impose a regularity boundary condition on the black hole

horizon, independent of the gauge index, the broken (electroweak or GUT) gauge symmetry

is restored.

Let us show why this is the case. Consider the Euclidean equation of motion for the

spatial directions of the gauge fields, in the gauge A5 = 0, and with the added simplification

of setting At = 0

A
′′

i +
f ′ + 2fA′

f
A

′

i −
q2e−2Ā

f
Ai −

w2e−2Ā

f2
Ai = 0 , (5.1)

where we have made a Fourier transformation in both the 4D spatial and temporal direc-

tions, denoting the spatial momentum by q and the frequency by w. The dashes refer to

differentiation with respect to y, and we have defined Ā(y) = A(y) − AUV. This equation

has a regular singular point at the black hole horizon, as can easily be verified by expanding

the equation near the singular point, obtaining

A
′′

i +
1

x
A

′

i −
q2e−2Ā(yh)

f ′(yh)x
Ai −

w2e−2Ā(yh)

f ′2(yh)x2
Ai = 0 . (5.2)

The coordinate x is given by x = y − yh, so that the horizon is at x = 0. From this

equation, one can deduce the behaviour of Ai near the horizon: the indicial equation

gives the roots ±w̄, where w̄ = e−Ā(yh)w/f ′(yh) and so there is a regular solution and a

linearly independent one which is divergent at the horizon. We are thus forced to select the

3Of course, one can always consider this “Higgsless” case to be a limiting case of the theory where the

Higgs is localized on the IR brane, with the Higgs mass taken to the cutoff. But the point is that the

massive gauge boson scattering amplitudes are not unitarized by a light Higgs, but rather by the spectrum

of massive Kaluza-Klein gauge boson modes.
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regular solution at the black hole horizon, as claimed. This is independent of the boundary

conditions on the UV brane, which are unmodified. Moreover, one can also see that for any

gauge direction in which the UV boundary condition is Neumann, the regularity condition

guarantees that the above equation can be solved for zero momentum. In other words, the

masslessness of the zero modes of the gauge fields is restored in the black hole geometry as

a direct consequence of regularity on the black hole horizon. The zero mode profile is flat

in the extra dimension, which obviously solves the above equation with w = q = 0.

6. Conclusions

In this letter we have re-examined the dynamics of the finite temperature (electroweak)

phase transition in warped Randall-Sundrum-like throat models, in particular focusing

upon a more realistic class of warped throat solutions based upon the Klebanov-Tseytlin

geometry. This geometry is much closer to the geometry one expects in typical string-

derived warped throat constructions than the AdS5 slice usually assumed. For IR branes

stabilized near the tip of a KT throat, we found that the transition rate is not para-

metrically suppressed beyond the expected N2 dependence in the bounce action. This

enhancement in rate compared to that previously obtained in Goldberger-Wise stabilized

RS models allows the transition to successfully complete over a wider range of parameter

space. Moreover, it is important that the N2 in the bounce action is the IR value of the

number of degrees of freedom, and it is only this number that is constrained to be small by

completion of the phase transition. Because of the deformed warped nature of the throat

the number of effective degrees of freedom (or equivalently the curvature radius) at higher,

UV, scales is larger so that the throat for most of its length is in a regime where the

leading order gravitational description is reliable even if NIR ∼ 1. Finally, we also com-

mented on aspects of the gauge symmetry breaking thermal phase transition in Higgsless

models with boundary condition breaking, such as orbifold-GUT models and the Higgsless

electroweak symmetry breaking theories of Csaki et al. with bulk Standard Model gauge

fields, and showed precisely how the IR boundary conditions implied by the horizon of the

high-temperature black hole phase lead to gauge symmetry restoration.
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